Bell Work

Algebra 2B

Day 1 - January $5^{\text {th }} 2016$

Solve

1. $\left(2 x^{2}+3 x-4\right)+\left(6 x^{2}+5\right)$
2. $\left(3 x^{2}-7 x+4\right)-\left(2 x^{2}-5 x+6\right)$
3. $(x+3)(x-7)$
4. $(x-5)(x+5)$

Day 2 - January 6 ${ }^{\text {th }} 2016$

Factor

1) $3 x^{2}+6 x$
2) $x^{2}+5 x+6$
3) $2 x^{2}+10 x+8$

Day 3 - January $7^{\text {th }} 2016$

Factor

1) $x^{2}+5 x+6$
2) $2 x^{2}-3 x-9$

Day 4 - January $11^{\text {th }} 2016$ - Begins Week 2

Factor:

$$
3 x^{2}-2 x-5
$$

Day 5 - January $12^{\text {th }} 2016$

Factor $x^{3}+x^{2}-12 x$
Hint: Factor out the greatest common factor.
Then: Use the factor tree.

Day 6 - January $13^{\text {th }} 2016$

Write a formula for length, width and height in terms of the variable x .
The Length, Width and Height add up to 10 cm .
The Width is twice as long as the Length.
Assume Height equals X .

Day 7 - January $14^{\text {th }} 2016$

Factor

$$
3 x^{2}+10 x+3
$$

Day 8 - January $19^{\text {th }} 2016$ - begins week 3

What are the possible factors of the following integers

1) 8
2) 5
3) 24

Day 9 - January $20^{\text {th }} 2016$

Find the slope:

1. $y=2 x+3$
2. Between the points: $(2,3)(5,7)$

Day 10 - January $21^{\text {st }} 2016$

Day 11 - January $25^{\text {th }} 2016$

Given the parent function: $f(x)=2(x+2)^{2}-3$
What is the child function that is translated two units up and 3 units to the right?

Day 12 - January $26^{\text {th }} 2016$

Draw a graph, based on the following polynomial.
Hint: start with the zeros
$f(x)=(x-2)(x-3)(x+1)$

Day 13 - January $27^{\text {th }} 2016$

Based on this graph:

1. What are the zeros?
2. Which zero has a multiplicity?
3. What is the End Behavior?

Day 14 - January $28^{\text {th }} 2016$

Based on the graph: (Needs to be updated)

1. Over what values is the function increasing and decreasing?
2. What are the Local Maximums and Local Minimums?

Day 18 - February $4^{\text {th }} 2016$

1. You invest $\$ 5,000$ in a bank in 2016 , at 7% interest. How much will this investment invest worth in 2020?

You must right the formula out and solve it correctly.

Day 19 - February 8 ${ }^{\text {th }} 2016$

Solve

$$
\begin{aligned}
& y=3(2)^{2} \\
& y=2(3)^{2} \\
& y=5(2)^{4}
\end{aligned}
$$

Day 20 - February ${ }^{\text {th }} 2016$

Re-write in exponential form

$$
\begin{aligned}
& \text { 1. } \log _{6} 36=2 \\
& \text { 2. } \log _{3} 81=4
\end{aligned}
$$

Day 21 - February $10^{\text {th }} 2016$

Solve the following equation:

$$
\text { 1. } 9^{3 x}=27^{2}
$$

Day 22 - February $11^{\text {th }} 2016$
Condense the following algogrithm

1. $6 \log _{3} u+6 \log _{3} v$

Expand the following algorithm
2. $\log (a \square b)^{2}$

Day 23 - February $16^{\text {th }} 2016$
Solve the following natural log by converting to an exponential equation.

1. $\ln (2 x+4)^{5}=10$

Day 24 - February $17^{\text {th }} 2016$

1) Draw the chart we use for determining End Behavior.
2) What is the end behavior of the following Polynomial: $y=4 x^{4}-5 x^{3}+2 x$

Day 25 - February $18^{\text {th }} 2016$

Solve the following equation:

1) $4^{(x+1)}=16^{(2 x+3)}$
