\qquad
\qquad
\qquad

5-5

Practice

Theorems About Roots of Polynomial Equations

Use the Rational Root Theorem to list all possible rational roots for each equation. Then find any actual rational roots.

1. $x^{3}-5 x^{2}+17 x-13$

To start, list the constant term's factors and the leading coefficient's factors.
constant term factors: $\pm 1, \pm 13$
leading coefficient factors: ± 1
2. $2 x^{3}-5 x^{2}+x-7$
4. $x^{3}-8 x^{2}-2$
5. $x^{3}-x^{2}+6 x-6$
6. $4 x^{3}+12 x^{2}+x+3$
7. $x^{3}-3 x^{2}-16 x-12$
8. $x^{3}+8 x^{2}-x-8$
9. $x^{3}-3 x^{2}-24 x-28$

Find all rational roots for $\boldsymbol{P}(\boldsymbol{x})=\mathbf{0}$.
10. $P(x)=x^{3}+5 x^{2}+2 x-8$
11. $P(x)=x^{4}-4 x^{3}-13 x^{2}+4 x+12$
12. $P(x)=x^{3}+14 x^{2}+53 x+40$
13. $P(x)=x^{3}+3 x^{2}-4 x-12$
14. $P(x)=x^{3}+5 x^{2}-9 x-45$
15. $P(x)=x^{3}+9 x^{2}-x-9$
16. $P(x)=x^{3}-7 x^{2}-x+7$
17. $P(x)=x^{3}-7 x^{2}+14 x-8$
\qquad
\qquad Date \qquad

5-5

Practice (continued)
Theorems About Roots of Polynomial Equations

A polynomial function $P(x)$ with rational coefficients has the given roots. Find two additional roots of $P(x)=0$.
18. $1+4 i$ and $\sqrt{3}$
20. $-8 i$ and $7-i$
21. $6-\sqrt{7}$ and $-3+\sqrt{10}$
22. $\sqrt{2}$ and $-\sqrt{13}$
23. $1-\sqrt{3}$ and $1+\sqrt{2}$

Write a polynomial function with rational coefficients so that $P(x)=0$ has the given roots.
24. $3 i$

To start, use the Conjugate Root Theorem to identify a second root.

Since $3 i$ is a root, $-3 i$
is also a root.
25. -2 and -8
26. 4 and 1
27. $2 i$ and $\sqrt{2}$
28. $3+i$ and $1-\sqrt{3}$
29. -4 and $5 i$
30. $2 i$ and i

What does Descartes' Rule of Signs say about the number of positive real roots and negative real roots for each polynomial function?
31. $P(x)=x^{3}-x^{2}-8 x+12$

To start, count and identify
the number of sign changes in $P(x)$.
32. $P(x)=2 x^{3}+2 x^{2}-5 x-2$
33. $P(x)=x^{4}-3 x^{3}-x+5$

