Name		Class	Date	
55	Practice			Form K
C-C	Theorems About Roots of Polynomial Equations			
Use the Ratio equation. The	onal Root Theorem to list all poss en find any actual rational roots.	sible rational roots for	each	
1. $x^3 - 5x^2 +$	17 <i>x</i> – 13			
To start, list the constant term's factors		constant term fact	tors: $\pm 1, \pm 13$	

2.
$$2x^3 - 5x^2 + x - 7$$
 3. $x^3 - 4x^2 - 15x + 18$

4.
$$x^3 - 8x^2 - 2$$
 5. $x^3 - x^2 + 6x - 6$

6.
$$4x^3 + 12x^2 + x + 3$$

7. $x^3 - 3x^2 - 16x - 12$

8.
$$x^3 + 8x^2 - x - 8$$

9. $x^3 - 3x^2 - 24x - 28$

Find all rational roots for P(x) = 0.

10.
$$P(x) = x^3 + 5x^2 + 2x - 8$$

11. $P(x) = x^4 - 4x^3 - 13x^2 + 4x + 12$

12.
$$P(x) = x^3 + 14x^2 + 53x + 40$$

13. $P(x) = x^3 + 3x^2 - 4x - 12$

14.
$$P(x) = x^3 + 5x^2 - 9x - 45$$

15. $P(x) = x^3 + 9x^2 - x - 9$

16.
$$P(x) = x^3 - 7x^2 - x + 7$$

17. $P(x) = x^3 - 7x^2 + 14x - 8$

Name	Class	Date

5-5 Practice (continued) Form K Theorems About Roots of Polynomial Equations

A polynomial function P(x) with rational coefficients has the given roots. Find two additional roots of P(x) = 0.

18. 1 + 4i and $\sqrt{3}$ **19.** $3 - \sqrt{2}$ and $1 + \sqrt{3}$
20. -8i and 7 - i **21.** $6 - \sqrt{7}$ and $-3 + \sqrt{10}$

22. $\sqrt{2}$ and $-\sqrt{13}$	23. $1 - \sqrt{3}$ and $1 + \sqrt{2}$
--	--

Write a polynomial function with rational coefficients so that P(x) = 0 has the given roots.

24. 3 <i>i</i>	
To start, use the Conjugate Root Theorem	m Since $3i$ is a root, $-3i$
to identify a second root.	is also a root.
25. –2 and –8	26. 4 and 1
27. $2i$ and $\sqrt{2}$	28. 3 + <i>i</i> and $1 - \sqrt{3}$

29. –4 and 5*i*

30. 2*i* and *i*

What does Descartes' Rule of Signs say about the number of positive real roots and negative real roots for each polynomial function?

31. $P(x) = x^3 - x^2 - 8x + 12$	There are 2 sign changes in $P(x)$.
To start, count and identify	So there are 0 or 2 positive real roots.
the number of sign changes in $P(x)$.	

32. $P(x) = 2x^3 + 2x^2 - 5x - 2$ **33.** $P(x) = x^4 - 3x^3 - x + 5$