Form K

Practice 5-2 Polynomials, Linear Factors, and Zeros

Write each polynomial in factored form. Check by multiplication.

- **1.** $x^3 + 11x^2 + 30x$
 - To start, factor out the GCF, *x*. $x(x^2 + 11x + 30)$
- **2.** $x^3 3x^2 x + 3$ **3.** $x^2 - 4x - 12$

4.
$$x^3 - 81x$$
 5. $x^3 + 9x^2 + 18x$

Find the zeros of each function. Then graph the function.

7. y = x(x-1)(x+3)**6.** y = (x + 2)(x + 3)

8.
$$y = (x - 4)(x - 1)$$

9. $y = x(x - 5)(x + 2)$

Write a polynomial function in standard form with the given zeros.

10. $x = -2, 1, 4$	
To start, write a linear factor for each zero.	(x - (-2))(x - 1)(x - 4)
Simplify	(x+2)(x-1)(x-4)

11.
$$x = 3, 0$$
 12. $3, -8, 0$

13. x = 3, -2, 1**14.** *x* = −4, 1

5-2 Polynomials, Linear Factors, and Zeros

Find the zeros of each function. State the multiplicity of multiple zeros.

- **15.** $y = (x 3)^2(x + 1)$ To start, identify the zeros. The zeros are 3 and -1.
- **16.** $y = x^2 + 3x + 2$ **17.** $y = (x + 5)^2$

18. $y = (x - 9)^2$ **19.** $y = 2x^2 - 2x$

Find the relative maximum and relative minimum of the graph of each function.

20. $f(x) = -3x^3 + 10x^2 + 6x - 3$

To start, use a graphing calculator.

(An approximate viewing window is

 $-5 \le x \le 5$ and $-10 \le y \le 30$.)

21.
$$f(x) = x^3 + 4x^2 - x + 1$$

22.
$$f(x) = x^3 - 6x + 9$$

Form K

23. Reasoning A polynomial function has a zero at x = b. Find one of its factors.

- **24.** The side of a cube measures 2x + 1 units long. Express the volume of the cube as a polynomial.
- **25.** The length of a box is 2 times the height. The sum of the length, width, and height of the box is 10 centimeters.
 - **a.** Write expressions for the dimensions of the box.
 - **b.** Write a polynomial function for the volume of the box. (To start, write the function in factored form).
 - **c.** Find the maximum volume of the box and the dimensions of the box that generates this volume.